516 research outputs found

    General amino acid control in fission yeast is regulated by a nonconserved transcription factor, with functions analogous to Gcn4/Atf4

    Get PDF
    Eukaryotes respond to amino acid starvation by enhancing the translation of mRNAs encoding b-ZIP family transcription factors (GCN4 in Saccharomyces cerevisiae and ATF4 in mammals), which launch transcriptional programs to counter this stress. This pathway involves phosphorylation of the eIF2 translation factor by Gcn2-protein kinases and is regulated by upstream ORFs (uORFs) in the GCN4/ATF4 5′ leaders. Here, we present evidence that the transcription factors that mediate this response are not evolutionarily conserved. Although cells of the fission yeast Schizosaccharomyces pombe respond transcriptionally to amino acid starvation, they lack clear Gcn4 and Atf4 orthologs. We used ribosome profiling to identify mediators of this response in S. pombe, looking for transcription factors that behave like GCN4. We discovered a transcription factor (Fil1) translationally induced by amino acid starvation in a 5′ leader and Gcn2-dependent manner. Like Gcn4, Fil1 is required for the transcriptional response to amino acid starvation, and Gcn4 and Fil1 regulate similar genes. Despite their similarities in regulation, function, and targets, Fil1 and Gcn4 belong to different transcription factor families (GATA and b-ZIP, respectively). Thus, the same functions are performed by nonorthologous proteins under similar regulation. These results highlight the plasticity of transcriptional networks, which maintain conserved principles with nonconserved regulators

    Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis

    Get PDF
    Schizosaccharomyces pombe cells have a well-defined pattern of polarized growth at the cell ends during interphase and divide symmetrically into two equal-sized daughter cells. We identified a gene, pom1, that provides positional information for both growth and division in S. pombe. pom1 mutants form functioning growth zones and division septa but show several abnormalities: (1) After division, cells initiate growth with equal frequencies from either the old or the new end; (2) most cells never switch to bipolar growth but instead grow exclusively at the randomly chosen end; (3) some cells mislocalize their growth axis altogether, leading to the formation of angled and branched cells; and (4) many cells misplace and/or misorient their septa, leading to asymmetric cell division. pom1 encodes a putative protein kinase that is concentrated at the new cell end during interphase, at both cell ends during mitosis, and at the septation site after mitosis. Small amounts of Pom1p are also found at the old cell end during interphase and associated with the actin ring during mitosis. Pom1p localization to the cell ends is independent of actin but requires microtubules and Tea1p. pom1 mutations are synthetically lethal with several other mutations that affect cytokinesis and/or the actin or microtubule cytoskeleton. Thus, Pom1p may position the growth and cytokinesis machineries by interaction with both the actin and microtubule cytoskeletons

    Genome-wide analysis of poly(A) site selection in schizosaccharomyces pombe,

    Get PDF
    Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, even though it is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq data sets from cells grown under various physiological conditions, we identify 3′ UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as is alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation by functional assays, including qRT-PCR and 3′RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of the genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin (on chromosome 2) are generally associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A)

    Reducing Operating Room Costs through Real Time Cost Information Feedback: A Pilot Study

    Get PDF
    Purpose: To create a protocol for providing real-time operating room (OR) cost feedback to surgeons. We hypothesize that this protocol will reduce costs in a responsible way without sacrificing quality of care. Methods: All OR costs were obtained and recorded for robot-assisted partial nephrectomy and laparoscopic donor nephrectomy. Before the beginning of this project, costs pertaining to the 20 most recent cases were analyzed. Items were identified from previous cases as modifiable for replacement or omission. Timely feedback of total OR costs and cost of each item used was provided to the surgeon after each case, and costs were analyzed. Results: A cost analysis of the robot-assisted partial nephrectomy before the washout period indicates expenditures of 5243.04percase.Tenrecommendedmodifiableitemswerefoundtohaveanaveragepercasecostof5243.04 per case. Ten recommended modifiable items were found to have an average per case cost of 1229.33 representing 23.4% of the total cost. A postwashout period cost analysis found the total OR cost decreased by 899.67(17.2899.67 (17.2%) because of changes directly related to the modifiable items. Therefore, 73.2% of the possible identified savings was realized. The same stepwise approach was applied to laparoscopic donor nephrectomies. The average total cost per case before the washout period was 3530.05 with 457.54attributedtomodifiableitems.Afterthewashoutperiod,modifiableitemscostswerereducedby457.54 attributed to modifiable items. After the washout period, modifiable items costs were reduced by 289.73 (8.0%). No complications occurred in the donor nephrectomy cases while one postoperative complication occurred in the partial nephrectomy group. Conclusion: Providing surgeons with feedback related to OR costs may lead to a change in surgeon behavior and decreased overall costs. Further studies are needed to show equivalence in patient outcomes

    Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    Get PDF
    Target of rapamycin complex 1 (TORC1), which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ∼84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not

    Php4 Is a Key Player for Iron Economy in Meiotic and Sporulating Cells

    Get PDF
    Meiosis is essential for sexually reproducing organisms, including the fission yeast Schizosaccharomyces pombe. In meiosis, chromosomes replicate once in a diploid precursor cell (zygote), and then segregate twice to generate four haploid meiotic products, named spores in yeast. In S. pombe, Php4 is responsible for the transcriptional repression capability of the heteromeric CCAAT-binding factor to negatively regulate genes encoding iron-using proteins under low-iron conditions. Here, we show that the CCAAT-regulatory subunit Php4 is required for normal progression of meiosis under iron-limiting conditions. Cells lacking Php4 exhibit a meiotic arrest at metaphase I. Microscopic analyses of cells expressing functional GFP-Php4 show that it colocalizes with chromosomal material at every stage of meiosis under low concentrations of iron. In contrast, GFP-Php4 fluorescence signal is lost when cells undergo meiosis under iron-replete conditions. Global gene expression analysis of meiotic cells using DNA microarrays identified 137 genes that are regulated in an iron- and Php4-dependent manner. Among them, 18 genes are expressed exclusively during meiosis and constitute new putative Php4 target genes, which include hry1+ and mug14+. Further analysis validates that Php4 is required for maximal and timely repression of hry1+ and mug14+ genes. Using a chromatin immunoprecipitation approach, we show that Php4 specifically associates with hry1+ and mug14+ promoters in vivo. Taken together, the results reveal that in iron-starved meiotic cells, Php4 is essential for completion of the meiotic program since it participates in global gene expression reprogramming to optimize the use of limited available iron

    Correcting the Shrinkage Effects of Formalin Fixation and Tissue Processing for Renal Tumors: toward Standardization of Pathological Reporting of Tumor Size

    Get PDF
    Given the importance of correctly staging renal cell carcinomas, specific guidelines should be in place for tumor size measurement. While a standard means of renal tumor measurement has not been established, intuitively, tumor size should be based on fresh measurements. We sought to assess the accuracy of postfixation and microscopic measurements of renal tumor size, as compared to fresh measurements and radiographic size. Thirty-four nephrectomy cases performed by a single surgeon were prospectively measured at different time points. The study cases included 23 clear cell renal cell carcinomas, 6 papillary renal cell carcinomas, and 5 other renal tumors. Radiologic tumors were 12.1% larger in diameter than fresh tumors (P<0.01). Furthermore, fresh specimens were 4.6% larger than formalin-fixed specimens (P<0.01), and postfixation measurements were 7.1% greater than microscopic measurements (P<0.01). The overall mean percentage of shrinkage between fresh and histological specimens was 11.4% (P<0.01). Histological processing would cause a tumor stage shift from pT1b to pT1a for two tumors in this study. The shrinkage effects of formalin fixation and histological processing may result in understaging of renal cell carcinomas. The shrinkage factor should be considered when reporting tumor size

    Optimisation of the Schizosaccharomyces pombe urg1 expression system

    Get PDF
    The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down P urg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining P urg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair
    • …
    corecore